### Bijay Lal Pradhan #### ############################## ### Coding and Decoding #### ##############################cs ## download data from my website #### http://bijaylalpradhan.com.np/data/ ### click on CS_Bank ############################ #### or download from http://bijaylalpradhan.com.np/wp-content/uploads/2022/04/CS_Bank.csv #################################### ################################################################################################################################## ## keep your data into your specific fodder and retrive it ##### data1 <- read.csv("E:/R-chitwan/CS_Bank.csv") #### decoding data ###################### data1$gender1[data1$Sex=="1"]="Male" data1$gender1[data1$Sex=="2"]="Female" ### similarly coding can be done as ################# data1$gender2[data1$gender1=="Male"]="1" data1$gender2[data1$gender2=="Female"]="2" ### decoding the data ########################## ################### Practice #################################### Now decode the data under the variable Confidence.Score.for.Bank as 1= strongly agree 2= agree 3= somewhat agree 4= neither agree nor disagree 5= somewhat disagree 6= disagree 7= strongly disagree #################### solution ############################################################## data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="1"]="strongly agree" data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="2"]="agree" data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="3"]="somewhat agree" data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="4"]="neither agree nor disagree" data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="5"]="somewhat disagree" data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="6"]="disagree" data1$Confidence.Score.for.Bank1[data1$Confidence.Score.for.Bank=="7"]="strongly disagree" ################################################################################################## ############# the coding decoding can be done alternatively as ################################## ######### using package: plyr::revalue(data1,) or package:dplyr::recode(data1,) ################# data1$gender3=revalue(data1$gender, c("1"="Male","2"="Female")) ## using plyr data1=data1 %>% mutate(gender4=recode(Sex, "1"="Male","2"="Female")) ## using dplyr ################################################################################################# data1$confidance=revalue(data1$Confidence.Score.for.Bank, c("1"= "strongly agree", "2"= "agree", "3"= "somewhat agree", "4"= "neither agree nor disagree", "5"= "somewhat disagree", "6"= "disagree", "7"= "strongly disagree")) ####### renaming variable name in dataframe ################################################# names(data1)[names(data1) == 'Confidence.Score.for.Bank'] = 'cs' ########################################################### #### to remove column from data frame ############### data1 = data1[ -c(9) ] ##################################################### ###################################################### ###### categories the number data ######################### data1 <- within(data1, { Income.cat <- NA # need to initialize variable Income.cat[Income < 10000] <- "Low" Income.cat[Income >= 10000 & Income < 20000] <- "Middle" Income.cat[Income >= 20000] <- "High"}) ############ converting data structure ####################### data1$Income.cat <- factor(data1$Income.cat) # cat to factor ##############################################################